Link:INB Home|INB English| INB русский язык|INB العربية|INB Türkiye|INB فارسی|INB Español|INB Français|INB Português|INB Deutsch|INB 國語|INB 中文|INB 日本语|INB 한국어|INB ภาษาไทย|INB tiếng Việt||Drug restores cells that are missing in MS patients
INB English forum
Welcome to (Industry & Native boffin) The industrial age here is full of fighting spirit, you and I both through this network space with Native biological spirit boffin came to the mad labs. home INBforum.com, come and join us Permanent name: inb-english.forumotion.com
INB English forum
Welcome to (Industry & Native boffin) The industrial age here is full of fighting spirit, you and I both through this network space with Native biological spirit boffin came to the mad labs. home INBforum.com, come and join us Permanent name: inb-english.forumotion.com
INB English forum

Welcome to (Industry & Native boffin) The industrial age here is full of fighting spirit, you and I both through this network space with Native biological spirit boffin came to the mad labs. home INBforum.com, Permanent name: inb-english.forumotion.com


You are not connected. Please login or register

《《《《《《《上一页INBforum   Go down

上一页INBforum》》》》》》》View previous topic View next topic Go down  Message [Page 1 of 1]

1Drug restores cells that are missing in MS patients Empty Drug restores cells that are missing in MS patients Sat Nov 30, 2013 12:26 am

Admin

Admin
Admin
[You must be registered and logged in to see this image.]
An oligodendrocyte and the myelin it produces.

UC Denver

Multiple sclerosis (MS) is an autoimmune disease in which the immune system destroys the myelin sheaths surrounding neurons. These myelin sheaths are often likened to the insulation surrounding electrical wires; they enable neurons to transmit electrical impulses specifically and efficiently.
Cells called oligodendrocytes make myelin and do so throughout adulthood. People with MS have plenty of oligodendrocyte precursor cells (OPCs), and these cells are able to migrate to sites where myelination is required. The problem is that these precursor cells fail to mature properly into myelin producing cells, and this failure promotes disease progression.
Many current approved therapies for MS are immunosuppressants, but researchers at The Scripps Research Institute tried another tack. They screened 100,000 (or so) structurally diverse molecules to try to find some that would induce OPCs to mature. The researchers identified compounds that could make rodent OPCs mature into oligodendrocytes in a dish.
A thyroid hormone can do this, but it “has several physiological effects that make it unattractive as a therapeutic agent for MS.” Other compounds that work “have limited therapeutic potential due to off-target activities, toxicity, poor brain exposure, and/or demonstrated lack of in vivo efficacy.” But these compounds provided valuable positive controls in the experiment, showing that it was possible to pick out these useful compounds.
One of the most effective inducers of OPC maturation they found is a drug called benztropine, which is already available in oral form as an approved treatment for Parkinson’s disease. Once the researchers homed in on benztropine, they confirmed that the oligodendrocytes it had coaxed into maturity could in fact make myelin when in a dish with neurons. The team then analyzed benztropine’s activity in a mouse model of MS, finding that it diminished the clinical severity of the acute and remission phases of the disease while pretty much eliminating the relapse phase. In this model system, benztropine worked at least as well as the immunosuppressive drugs now in use to treat MS.
Benztropine isn't ideal. Its use is “associated with dose-dependent adverse neurological side effects”—cognitive changes, blurred vision, anorexia, and psychosis. So the authors decided to see if it could be used at a lower dose when combined with other therapies.
Fingolimod is an immunosuppressant that has reduced the relapse rate in relapsing-remitting multiple sclerosis by over half. But its use can lead to a dose-dependent bradycardia—it slows the heart rate. So in the researchers' mouse model, a combination of suboptimal doses of this with benztropine yielded a decrease in clinical severity. The combination of drugs was as good in terms of results as the standard therapeutic dose of Fingolimod.
Since the side effects are dose dependent, reducing the dose of each drug without sacrificing efficacy is a big deal. The authors hope that remyelination enhancers like benztropine might one day become good clinical options to treat MS, and they are now examining other hits from their initial screen to find some more.]

http://eng.inbforum.com

上一页INBforum   Go down

上一页INBforumView previous topic View next topic Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum

Copyright ©2009-2016 LTD Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

IT:SINGLESERVGoogle谷歌翻译TranslateFORUMSOFTLAYERGoogle谷歌广告联盟AdSenseAsia

 

Create a forum on Forumotion | ©phpBB | Free forum support | Report an abuse | Forumotion.com